(7) U. Bachrach, FEBS Lett., 68, 63 (1976).

(8) O. Heby, L. J. Marton, C. B. Wilson, and H. M. Martinez, J. Cell Physiol., 86, 511 (1975).

(9) A. Raina, R. L. Pajula, and T. Eloranta, FEBS Lett., 67, 252 (1976).

(10) J. Jänne, H. Pösö, and A. Raina, Biochim. Biophys. Acta, 473, 241 (1978).

- (11) O. Heby, L. J. Marton, C. B. Wilson, and H. M. Martinez, FEBS Lett., 50, 1 (1975).
 - (12) L. Stevens, Biol. Rev., 45, 1 (1970).
 - (13) A. Raina and J. Jänne, Med. Biol., 53, 121 (1975).

(14) C. M. Caldarera, C. Rossoni, and A. Casti, *Ital. J. Biochem.*, 25, 33 (1976).

(15) U. Bachrach, "Function of Naturally Occurring Polyamines," Academic, New York, N.Y., 1973.

(16) D. H. Russell and B. G. M. Durie, Prog. Cancer Res. Ther., 8, 1 (1978).

(17) C. Clo, G. C. Orlandini, A. Casti, and C. Guarnieri, Ital. J. Biochem., 25, 94 (1976).

(18) H. G. Williams-Ashman and Z. N. Canellakis, Perspec. Biol. Med., 22, 421 (1979).

(19) C. Y. Chiou, C. J. Chu, and N. E. Liddell, Arch. Int. Pharmacodyn. Ther., 235, 35 (1978).

(20) S. K. Chapman, R. L. Hawke, S. K. Glant, S. S. Mann, K. S. Hwang, and J. W. Doyle, *Pharmacology*, 21, 233 (1979).

(21) R. H. Fillingame, C. M. Jorstad, and D. R. Morris, Proc. Natl. Acad. Sci. USA, 72, 4042 (1975).

- (22) P. S. Mamont, P. Bohlen, P. McCann, P. Bey, F. Schuber, and C. Tardif, *ibid.*, **73**, 1626 (1976).
- (23) J. E. Kay and A. E. Pegg, FEBS Lett., 29, 301 (1973).
- (24) E. Hölttä, P. Pohjanpelto, and J. Jänne, ibid., 97, 9 (1979).

(25) M. M. Abdel-Monem, N. E. Newton, and C. E. Weeks, J. Med. Chem., 17, 447 (1974).

(26) P. P. McCann, C. Tardif, M. C. Duchesne, and P. S. Mamont, Biochem. Biophys. Res. Commun., 76, 893 (1977).

(27) W. F. Fong, J. S. Heller, and E. S. Canellakis, *Biochim. Biophys.* Acta, **428**, 456 (1976).

(28) A. Kallio, Acta Chem. Scand., 32, 759 (1978).

(29) A. Kallio, H. Pösö, G. Scalabrino, and J. Jänne, FEBS Lett., 73, 229 (1977).

(30) A. Kallio, H. Pösö, S. K. Guha, and J. Jänne, *Biochem. J.*, 166, 89 (1977).

(31) H. Pösö, Acta Chem. Scand. B, 31, 71 (1977).

(32) A. E. Pegg, C. Conover, and A. Wrona, *Biochem. J.*, 170, 651 (1978).

(33) H. Pösö, A. Kallio, G. Scalabrino, and J. Jänne, *Biochim. Biophys.* Acta, 497, 288 (1977).

(34) H. Hibasami and A. E. Pegg, Biochem. Biophys. Res. Commun., 81, 1398 (1978).

(35) P. S. Mamont, M. C. Duchesne, A. J. Joder-Ohlenbusch, and J. Grove, in "Enzyme-Activated Irreversible Inhibitors," Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, 1978, pp. 43-53.

(36) S. I. Harik, M. C. Hollenberg, and S. H. Snyder, *Mol. Pharmacol.*, **10**, **41** (1974).

(37) R. T. Schimke, Adv. Enzymol., 37, 135 (1973).

ACKNOWLEDGMENTS

The authors thank Ms. S. S. Mann and Mr. K. S. Hwang for their assistance.

Antineoplastic Evaluation of Pacific Basin Marine Algae

M. KASHIWAGI **, J. S. MYNDERSE [‡], R. E. MOORE [‡], and T. R. NORTON *

Received October 18, 1979, from the *Department of Pharmacology, University of Hawaii, Leahi Hospital, Honolulu, HI 96816, and the *Department of Chemistry, University of Hawaii, Honolulu, HI 96822. Accepted for publication January 24, 1980.

Abstract \Box Extracts of 107 marine alga specimens from Pacific islands were tested for P-388 lymphocytic leukemia and Ehrlich ascites tumor in mice. Several specimens showed high antitumor activity in both systems, with some featuring a notable lack of toxicity.

Keyphrases □ Antineoplastic activity—marine algae from Pacific islands, testing against P-388 lymphocytic leukemia and Ehrlich ascites tumor □ Marine algae—antineoplastic evaluation against P-388 lymphocytic leukemia and Ehrlich ascites tumor □ Antitumor activity marine algae from Pacific islands, testing against P-388 lymphocytic leukemia and Ehrlich ascites tumor

There have been numerous reports of antitumor substances obtained from terrestrial plants, but no information on antitumor agents from marine plants was published prior to 1977 when Mynderse *et al.* (1) reported that chloroform extracts of some marine blue-green algae showed activity against P-388 lymphocytic leukemia in mice. A P-388 active compound was isolated from one alga, *Lyngbya majuscula* Gomont, and shown to be debromoaplysiatoxin. This finding prompted screening of other marine algae from the Pacific basin for activity against P-388 lymphocytic leukemia and Ehrlich ascites tumor in mice.

The 107 alga specimens were collected from Palau (Western Caroline Islands), Fanning Island (Line Islands),

Enewetak Atoll (Marshall Islands), Johnston Island, and the Hawaiian Islands. Voucher samples were retained for most specimens, and the collection site of each sample was recorded carefully.

This paper is a preliminary report of the antitumor activity of crude extracts and some partially purified fractions from these algae.

EXPERIMENTAL

Most algal samples were refrigerated or frozen soon after collection. When refrigerator or freezer facilities were not available, the samples were air dried. The frozen samples were freed from extraneous matter and freeze dried before extraction. The dried samples were powdered in a mortar or blender¹.

There were two general extraction procedures. In Method I, the dried alga was extracted initially with a succession of organic solvents of increasing polarity followed by a final extraction with water. In Method II, the sample was subjected to extraction with 30% ethanol followed by extractions (liquid-liquid) with a succession of organic solvents of the aqueous concentrate.

In Method I, the sample was homogenized in a blender¹ for 5 min with a volume of organic solvent weighing five to 10 times the sample weight. The mixture then was allowed to stand for 24 hr or was stirred for 4–5 hr. The resultant homogenate was centrifuged, and the supernate was

¹ Waring.

Journal of Pharmaceutical Sciences / 735 Vol. 69, No. 6, June 1980

Table I—Active Materials

		Extracting					Ehrlich Ascites ^c			
		Solvent and		P-388 Lymphocytic Leukemia ^b			Survivors at 30 Days			
Alga Sample	Location	Purity of Fraction ^a	Dose, mg/kg	Percent Activity ^d	Number of Mice	Toxicity, deaths ^e	Dose, mg/kg	Percent Alive	Nonascitic	
Aphanococcus										
biformis A. Br.,										
30%	Dalaa		00.0	105	F	٥	00.0	٥	0	
(Kütz) Nog 20%	Palau	n-Butanoi, I	29.0	125	9	0	23.2	0	0	
Oscillatoria foreaui										
Fremy, 30%										
Bangia sp.	Palau	30% ethanol, I	17.5	230	4	0	14.0	100	100	
		30% ethanol, II	21.8	224	5	0	12.4	80	80	
		30% ethanol, 11	12.4	196	5	0	11.9	100	100	
Caularna racamosa	Palau	30% ethanol, III	<0.0 50.0	100	5 A	0	<0.5 40.0	100	80	
var. peltata Lam.	Tatau	30% ethanol, II				<u> </u>	1.3	100	80	
van periora Lann		30% ethanol, III	_				0.8	80	80	
Crinalium sp.	Fanning	Ethyl acetate, I	_		—		6.0	50	50	
	Island	Ethyl acetate, I	17.5	178	6	1	14.0	80	80	
a		Water, III	0.5	210	4	0		_		
Cryptonemia	Palau	30% ethanol, I	100	129	4	0	80.0	U	0	
Crenulata J. Ag.	Oahu	Mathylana ahlarida. I	159	190	4	0	199	٥	0	
.Ι Ασ	Hawaii	Methylene chloride I	265	135	4	0	212	0	0	
0. / ig .	Hawan	Methylene chloride, I					68	80	80	
Ectocarpus	Fanning	Ethyl acetate, I	25	170	5	1	20	0	0	
breviarticulatus	Island									
J. Ag.					_	_			_	
Gracilaria salicornia	Palau	30% ethanol, I	0.5	137	3	0	0.4	0	0	
(C. Ag.) Dawson	Dalari	Dutanal I	91 E	154	4	0	17.0	٥	0	
naumeaa sp.	raiau	Hevene I	21.5	131	4	0	20.8	0	0	
Herposiphonia	Fanning	30% ethanol. I			_	_	120	100	100	
arcuata Hollenberg	Island	30% ethanol, II	_				10	80	60	
Lobophora variegata	Palau	Butanol, I	21.5	127	4	0	17.2	0	0	
(Lamx.) Wom.		Hexane, I	10.0	127	5	0	8.0	0	0	
.	D 1	Chloroform, I	11.0	144	5	0	8.8	0	0	
Lyngbya convervoides	Palau	30% ethanol, I	_		—		20	100	100	
U. Ag. I ynghyg maiusculo	Palau	Wotor I	25.0	166	5	1				
Gomont	I alau	Water II	10.0	164	5	0	8	60	40	
Gomoni		Water, III	<0.5	166	5	ŏ	< 0.4	100	100	
	Oahu,	Chloroform, I	4.2	134	5	1	3.2	20	20	
	Hawaii	Chloroform, I	0.5	144	5	0	0.4	0	0	
Lyngbya sp.	Hawaii,	Methanol, I			-		27.2	100	100	
	Hawaii	Methanol, II Methanol, II	150	182	5	0	16	100	100	
Oscillatoria annas	Palau	30% ethanol I	415	125	5	3	222	100	100	
van Goor	1 alau	50% ethanol, 1	410	120	0	0	002	, ,	0	
Oscillatoria sp.	Palau	30% ethanol, I	5.0	205	5	0	4.0	100	100	
-		30% ethanol, III					0.4	100	100	
Phormidium	Johnston	Methylene chloride, I	7.5	134	5	3	6.0	0	0	
crosbyanum Tilden	Island		10 5	010	-	0	10	100	100	
Phormialum sp.	Molokal,	Methanol, I	12.5	210	ð	0	10	100	100	
Sargassum	Palau	30% ethanol I	250	129	4	0	200	0	0	
polycystum C. Ag.	1 uluu	oon conunoi, i	200	120	-	Ũ	200	Ū	Ũ	
Schizothrix	Fanning	Ethyl acetate, I	25	255	5	3	2.5	100	100	
calcicola (Ag.)	Island	Water, II	2.5	209	5	1	3.6	100	80	
Gomont										
Rivularia atra										
Born. + ria. Entophysalis dausta										
(J. Ag.) Dr. + Dail.	Enewetak	Methanol, I	22	125	5	1			—	
Anacystis dimidata										
(Kütz.) Dr. + Dail.										
Schizothrix sp.	Enewetak	Methanol, I	_				8.0	40	40	
Spyridia filamentosa	Uahu,	Methylene chloride, I	90	128	5	1	—	—	-	
(wullen) Harvey	Fanning	Ethyl acatata T	195	045	5	2	10.9	Δ	٥	
conglutingta	Island	Limyi actuare, 1	19.0	200	0	U	10.0	v	v	
var. clorata										
Ghose										

736 / Journal of Pharmaceutical Sciences Vol. 69, No. 6, June 1980

Table I—Continued

		Extracting Solvent and	P-388 Lymphocytic Leukemia ^b				Ehrlich Ascites ^c Survivors at 30 Days		
Alga Sample	Location	Purity of Fraction ^a	Dose, mg/kg	Percent Activity ^d	Number of Mice	Toxicity, deaths ^e	Dose, mg/kg	Percent Alive	Nonascitic
Tydemannia expeditionis Weber von Berro	Palau Enewetak	30% ethanol, I Chloroform, I	250 19	130 156	4 5	0 3	200 15.2	0 0	0 0
Udotea geppii Yamada	Enewetak	Methylene chloride, I	-	—		_	47.6	100	100

^a I = crude; II = fraction chromatographed through Sephadex G-25; and III = fraction chromatographed through CM Sephadex C-25. ^b Standard screening procedure used in this laboratory (2). ^c Procedure used in this laboratory described by Tabrah *et al.* (3). ^d Mean survival time as percent of untreated, diseased controls. ^e Number of mice that died within 7 days after tumor cell inoculation.

Table II—Nonactive Samples

Sample	Location	Sample	Location
	D-1	Halophila ovata Gaud.	Palau
Amphiroa fragilissima (L.) Lamour.	Palau	Halymenia maculata J. Ag.	Palau
Aphanocapsa biformis A. Br.	Palau	Herposiphonia arcuata Hollenberg	Fanning
Asparagopsis taxiformis (Del.) Coll. + Herr.	Enewetak		Island
Boodlea composita (Harv.) Brand.	Palau	Hvella caespitosa Born et Flah	Fanning
Bornetella nitida (Harv.) Mun.	Palau		Island
Bryopsis sp.	Fanning	Hypnea nidifica J. Ag.	Palau
	Island	Hypnea pannosa J. Ag.	Palau
Calothrix crustacea Born. + Fla.	Enewetak	Liagora farinosa Lamour	Enewetak
Caulerpa racemosa var. laetevirens (Mont.) Weber	Palau	Liagora maxima Butters	Oahu Hawaii
van Bosse		Labophorg sp	Enouvetely
Caulerpa racemosa var. occidentalis (J. Ag.) Boerg.	Palau	Lobophora sp.	Delau
Caulerpa racemosa var. peltata Lam.	Palau	Looophoru variegata (Lamx.) wom.	Falau Dalau
Caulerpa urvilliana Mont	Fanning	Lyngoya convervolaes C. Ag.	
cauter pa ar ormana month	Island	Lyngoya majuscula Gomont	Palau
Centroceras clavulatum (C. Ag.) Mont	Fanning	Lyngbya porphyrosiphonis Fremy	Palau
Centrocerus chubatarani (O. Mg.) Mont.	Island	Lyngbya semiplena (C. Ag.) J. Ag.	Palau
Contropone minimum Vomado	Fnowatak	Martensia fragilis Harvey	Oahu, Hawaii
Chlorodesmis hildshandtii Conn et Conn	Dalan	Microcoleus acutissimus Gardner	Fanning
Chioroaesmis nilaeoranatii Gepp et Gepp	Palau		Island
Chonarococcus nornemanni (Lyng.) Kutz.		Microcoleus sp.	Fanning
Codium geppei Schmidt	Enewetak	- ,	Island
Crinalium sp.	Palau	Microcoleus tenerrimus Gomont	Enewetak
Dactylococcopsis raphidioides Hansg.	Fanning	Microcoleus vaginatus (Vaucher) Gomont	Palau
	Island	Nostoc calcicola Born, et Flah.	Palau
Derbesia sp.	Palau	Oscillatoria hamelii Fremy	Palau
Dictyopteris repens (Okamura) Boerg.	Palau	Oscillatoria nigroviridis Gomont	Enewetak
Dictyosphaeria sp.	Oahu, Hawaii	Oscillatoria sp	Fanning
Dictyota acutiloba J. Ag.	Oahu, Hawaii	Oscinatoria sp.	Ieland
Dictvota divariacata Lamour.	Enewetak	Pading commercipii Bory	Delou
Dictvota friabilis Setchell	Fanning	Polyainhonia augdrata Hollonhong	Fanning
	Island	Polysiphonia quadrata nonenberg	Faining
Dictvota patens J. Ag.	Palau	Dimentalian	
Enteromorpha sp	Oahu Hawaii	Pterocladia sp.	Uanu, Hawan
Fucheuma striatum Schmidt	Oahu Hawaii	Rhipilia orientalis A. + E. Gepp	Enewetak
Falkenhardia rufanologa Hervey	Enewetak	Scytonema pascheri Bharaduaja	Fanning
Closenance desertisans (A Br) Richter	Fanning		Island
Gibeocapsa aeconticans (A. Di.) nicitier	Island	Spyridia filamentosa (Wulfen) Harvey	Oahu, Hawan
Cancilaria salisonnia (C. A.g.) Demos	Dalau	Symploca hydnoides Kütz.	Palau
Gracitaria saticornia (C. Ag.) Dawson	Deleu	Symploca sp.	Palau
nuimeaa cylinaracea Decaisne	ralau Dalau	Turbinaria ornata (Turn.) J. Ag.	Palau
Halimeaa aiscolaea Decaisne		Tydemannia expeditionis Weber van Bosse	Palau
Halimeda macrophysa Barton	Enewetak	Valonia aegagropila C. Ag.	Fanning
Halimeda monile (Sol.) Lamour.	Enewetak		Island
Halimeda opuntia (L.) Lamx.	Palau	Valonia ventricosa J. Ag.	Palau

evaporated *in vacuo* to yield the crude lipophilic extract. The marc was dried and then soaked in a volume of water weighing five to 10 times the marc weight for 4–5 hr with stirring and for an additional 24 hr or more without stirring. After centrifugation, the supernate was freeze dried to give the water-soluble extract. For initial fractionation, the water-soluble extract was subjected to gel filtration² with 0.1 *M* ammonium bicarbonate as the eluent. This procedure was followed by cation-exchange chromatography³ with a gradient elution of the active compound with 0.03–3.0 *M* ammonium acetate. All column separations were monitored by UV spectroscopy at 280 nm⁴.

In Method II, a sample was extracted initially with 30% ethanol in the same manner as described for Method I for the extraction of water-soluble constituents from the marc. After the ethanol was eliminated from the

³ CM Sephadex C-25, Pharmacia Fine Chemicals, Piscataway, NJ 08854.
⁴ Model UA-5 absorbance monitor, Instrument Specialties Co., Lincoln, NE 68505.

supernate by flash evaporation, this crude extract was extracted further with either n-butanol or chloroform to remove lipophilic constituents. The water-soluble fraction then was purified by procedures similar to those described for Method I for the water-soluble crude extract.

The isolation of the purified lipophilic antitumor agents will be reported later.

RESULTS AND DISCUSSION

The results of the screening tests are listed in Tables I and II. Table I shows that eight marine algal extracts had T/C (test/control) values of \geq 170% in the P-388 lymphocytic leukemia test. Of these extracts, six species showed T/C activity of >200%. In the E-hrlich ascites tumor system, nine species of algae showed a 100% survival rate at 30 days with no ascitic condition. Several of the groups of mice that survived for 30 days with a nonascitic condition were kept alive for an additional 30 days with no tumor recurrence at the end of the 60-day period.

² Sephadex G-25, Pharmacia Fine Chemicals, Piscataway, NJ 08854.

Some of the algal extracts active against both P-388 leukemia and Ehrlich ascites tumor were subjected to preliminary isolation work (Table I). The finding that some of these crude extracts as well as partially purified fractions showed excellent activity at relatively low dosages with no evidence of toxicity is most encouraging.

Table II lists the marine algae that showed a T/C activity of <125% against P-388 lymphocytic leukemia and <20% survivors at 30 days in the Ehrlich ascites tumor system.

REFERENCES

(1) J. S. Mynderse, R. E. Moore, M. Kashiwagi, and T. R. Norton, *Science*, **196**, 538 (1977).

COMMUNICATIONS

Ocular Absorption of Propranolol in Rabbits

Keyphrases \square Propranolol--ocular absorption in rabbits $\square \beta$ -Adrenergic blocking agents—propranolol, ocular absorption in rabbits \square Absorption, ocular—propranolol in rabbits

To the Editor:

The topical application of β -adrenergic blocking agents to the eye has been found to be effective in the control of glaucoma (1). However, the precise rate and extent of disposition of these compounds in the various ocular tissues have not been fully established. The purpose of this report is to compare and contrast the ocular absorption of a model β -blocking agent, propranolol, to what is known about the widely used miotic pilocarpine.

Male New Zealand albino rabbits, 3.0-3.6 kg, were minimally restrained in wooden boxes; topical and local anesthetics were not used. A $50-\mu l$ dose of 0.5% propranolol hydrochloride in isotonic buffer (pH 7.4) was instilled onto the cornea and allowed to distribute normally within the cul-de-sac. All tissue sampling procedures were performed as outlined previously (2, 3). The tissue samples collected were the whole intact cornea, aqueous humor, iris, and lens. The amount and concentration of propranolol in these tissues were determined spectrophotofluorometrically (4). The minimum detection limit for the drug was ~5 ng.

Figure 1 shows the propranolol concentration in ocular tissues as a function of time. The data indicate that propranolol reached a peak concentration in the aqueous humor at ~ 30 min. This result corresponds well with previous data for pilocarpine, which has a peak time of 20-30 min. This peak time was anticipated in the current studies since it was shown previously that the apparent ocular pharmacokinetic parameters are largely determined by the parallel first-order loss process in the precorneal area, so that most drugs show similar peak times in the aqueous humor (2, 5). The elimination characteristics of propranolol also are very similar to pilocarpine and suggest that both drugs are lost from the eye via the same mechanism, namely, aqueous humor turnover. The rate constant associated with this process for pilocarpine in rabbits is $0.017 \text{ min}^{-1}(2)$, and this value is nearly identical to the elimination rate of propranolol from the aqueous humor in the present studies (0.019 min^{-1}) .

738 / Journal of Pharmaceutical Sciences Vol. 69, No. 6, June 1980 (2) D. F. Dunn, M. Kashiwagi, and T. R. Norton, Comp. Biochem. Physiol., 50C, 133 (1975).

(3) F. L. Tabrah, M. Kashiwagi, and T. R. Norton, Int. J. Clin. Pharmacol., 5, 420 (1972).

ACKNOWLEDGMENTS

Supported by National Institutes of Health Grant CA 12623-06 from the National Cancer Institute, the George F. Straub Trust Estate and the Atherton Family Foundation, both of Honolulu, Hawaii, and the Elsa U. Pardee Foundation, Midland, Mich.

The authors thank Dr. Dennis J. Russell for identifying the algae and Dr. John Cardellina and Dennis Mead for technical assistance.

Figure 1—Concentration of propranolol in various ocular tissues after topical application of propranolol solution. Key: \bullet , cornea; \circ , iris; \blacksquare , aqueous humor; and \Box , lens.

Concentration-time profiles such as those depicted in Fig. 1 can be somewhat misleading in ocular studies of this type which deal with tissues of greatly different distribution volumes. For this reason, it often is useful to consider the amount of drug represented by the peak drug concentration for each tissue. These data are presented in Table I. The rank order for tissue concentration was cornea > iris > aqueous humor > lens, whereas the rank order for tissue amounts was cornea > aqueous humor > iris > lens. The change in rank order for the iris and aqueous humor was due to the 12-fold difference in the wet weights of these